A Microalgae-based Platform for the Beneficial Reuse of CO₂ Emissions from Power Plants

ELAWARE.

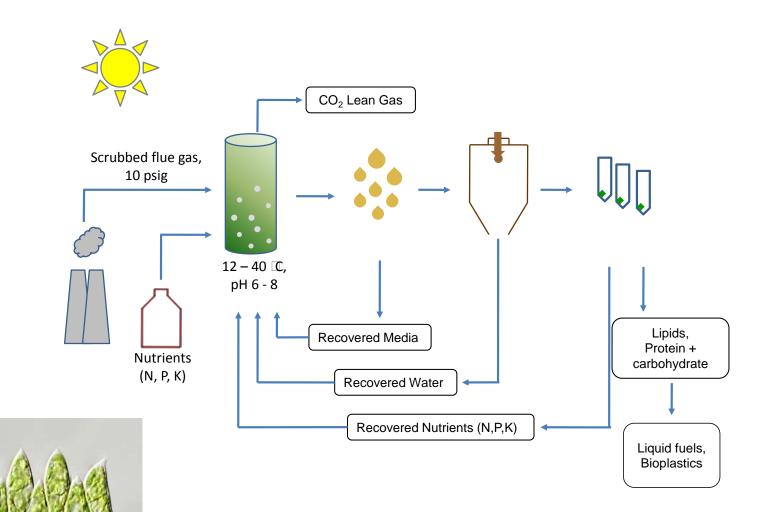
Mark Crocker University of Kentucky mark.crocker@uky.edu

Project Overview

G Funding:

DOE: \$990,334 Cost share: \$261,110 Total project: \$1,251,444

Performance dates: 10/1/2015 – 9/30/2017


Project Participants:

- University of Kentucky
- University of Delaware
- Algix LLC
- Duke Energy

Project Objectives:

- Optimize UK's technology for microalgae cultivation and processing with respect to cost and performance, particularly with regard to harvesting and dewatering
- Develop strategies to monitor and maintain algae culture health
- Develop a biomass utilization strategy which produces lipids for upgrading to fuels and a proteinaceous feedstock for the production of algal-based bioplastics
- Perform techno-economic analyses to calculate the cost of CO₂ capture and recycle, and life cycle analyses to evaluate the GHG emission reduction potential.

Simplified Process Schematic

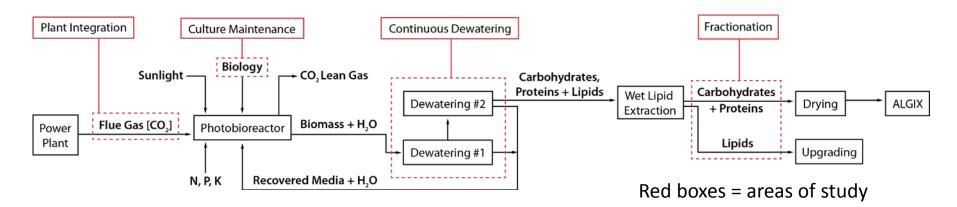
Scenedesmus acutus

Large-Scale Algae Cultivation

Open Ponds:

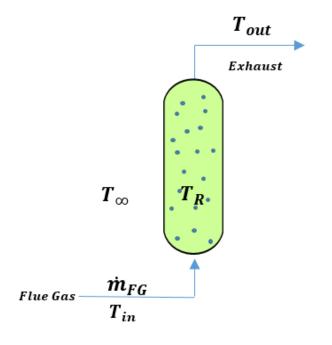
- Relatively low capital cost
- Mature technology
- Operationally simple
- Large area requirements
- Significant evaporative losses
- Subject to contamination
- Low CO₂ utilization efficiency

Photobioreactors:


- Higher yield of biomass per unit area
- Low water loss
- Lower risk of culture contamination
- Can be further optimized?
- High capital cost
- Technology is not mature
- Operational costs?

Advantages and Challenges

- Ability to generate a valuable product, thereby off-setting costs of CO₂ capture (potential for new industry)
- \succ No need to concentrate CO₂ stream
- Potential to polish NOx and SOx emissions
- Areal productivity such that very large algae farms required for significant CO₂ capture
- CO₂ capture efficiency modest (<50%)
- Challenging economics: cost of algae cultivation is high (currently >\$1,000/MT), hence require medium to high value applications for produced algae biomass
- Market size generally inversely related to application value (hence risk of market saturation)


Technical Approach/Project Scope

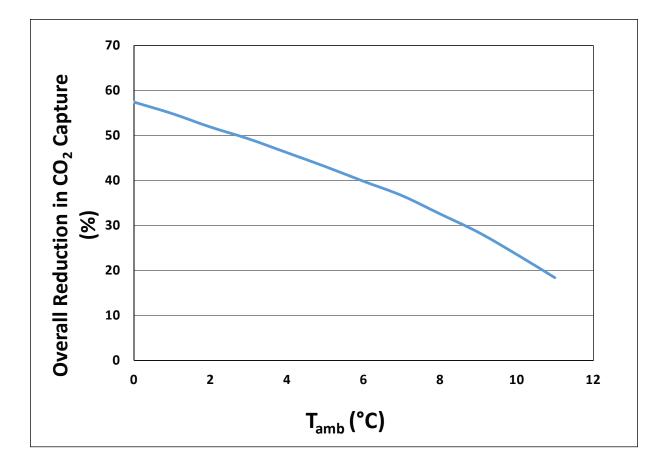
Year 1:

- Task 1: Project Management (all)
- Task 2: Engineering Analysis & Testing (UK):
 - PBR/power plant heat integration assessment
 - design, construction and lab testing of continuous algae dewatering system
 - operation and field testing of PBR + dewatering system
- Task 3: System Biology (UD):
 - plant outage mitigation system design
 - effect of flue gas constituents on biomass composition
- Task 4: Biomass Valorization/Utilization (UK/Algix)
 - lipid extraction from wet algae biomass
 - characterization of production biomass
 - bioplastic formulation

Engineering Analysis & Testing (Task 2): Heat Transfer Model for Photobioreactor Modeled as a Single Tube

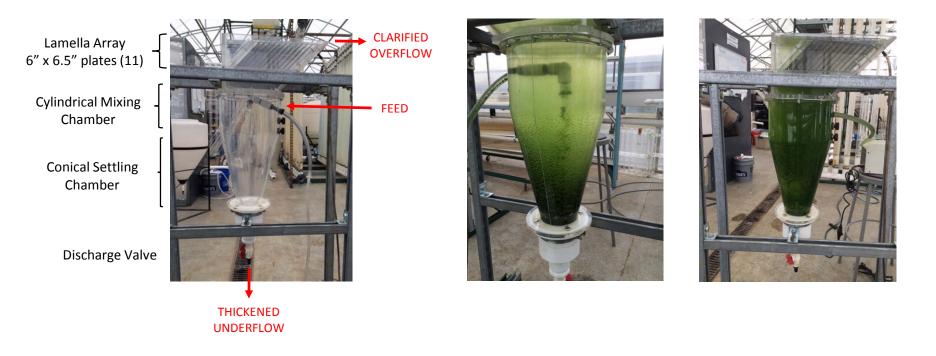


$$Q_{Total} = m_R C p_R \left(\frac{dT_R}{dt}\right) = Q_1 + Q_2 + Q_3$$
$$Q_1 = U A (T_R - T_\infty)$$
$$Q_2 = \dot{m}_{FG} C p_{FG} (T_{in} - T_{out})$$
$$Q_3 = \dot{m}_{FG} \lambda_{H_2O} (y_{H_{2O_{IN}}} - y_{H_{2O_{OUT}}})$$

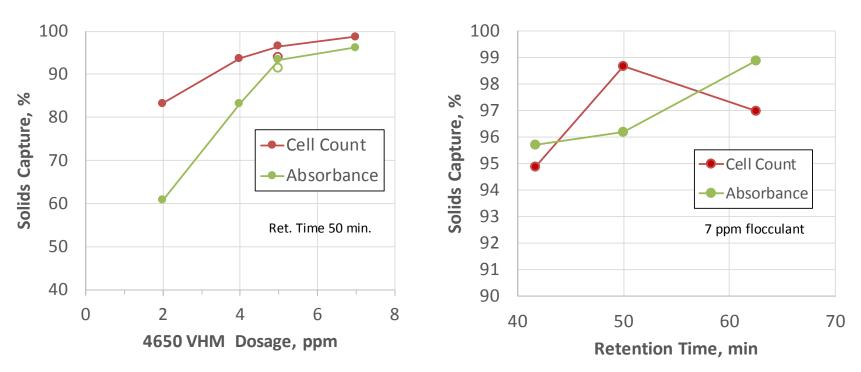

If T_R is constant $\rightarrow Q_1 = Q_2 = Q_3$ If $T_R \neq constant \rightarrow m_R C p_R \left(\frac{dT_R}{dt}\right) = Q_1 + Q_2 + Q_3$

$$U = \left[\left(\frac{1}{h_{H_2O}A_i} \right) + \left(\frac{\ln\left(\frac{r_o}{r_i}\right)}{2\pi K_{PET}L} \right) + \left(\frac{1}{h_{air}A_o} \right) \right]^{-1}$$

Experimental Determination of U (Overall Heat Transfer Coefficient) using Data from 2015 Growing Season (May-Sep)



Reduction in Overall CO₂ Capture vs. Ambient Temperature


- > Assumptions: 30% CO_2 capture from a 1 MW coal-fired power plant
- \blacktriangleright Heat source = boiler water (910,000 L/min, T = 32-45 $^{\circ}$ C)
- Increased CO₂ emissions arise from pumping boiler water to PBR heat exchanger and increased cycling of PBR culture through heat exchanger

Continuous Thickener Prototype

- 25 L lamella thickener: conical-shaped settling chamber to promote biomass compaction; 11 lamella plates inclined at 45° to provide settling surface for residual solids
- Overflow analyzed for residual solids (cytometer, UV-vis spectrophotometer)

Effect of Dosage

Note: Filled data points denote batch flocculant addition Open data points denote continuous flocculant addition

- > 95% solids recovery using 7 ppm flocculant and retention time of 50 min
- Results for continuous flocculant addition also promising

East Bend Station Demonstration Facility

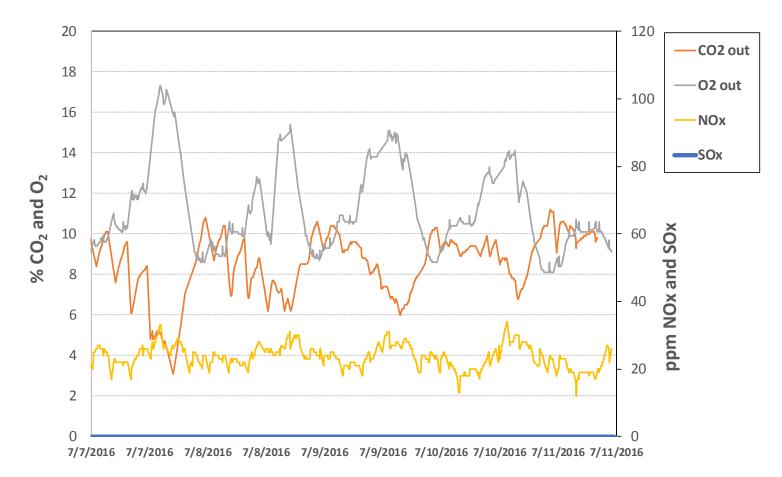
650 MW Scrubbed Unit (SCR, FGD, ESP)

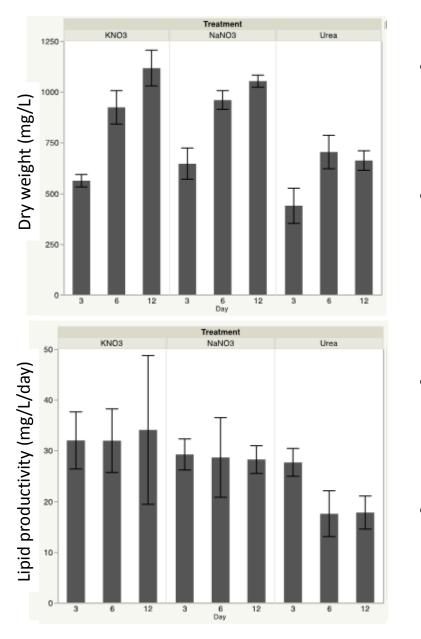
MAIN GOALS

- Define kinetics of process
 - Monitor dissolved CO₂ and O₂ to determine photosynthetic rate
 - Help size large system and next generation design
- Gain understanding of real capital and operating costs
 - Minimize energy consumption
- Measure biomass composition to track heavy metals and other flue gas constituents

	CO ₂ %	NO _x ppm	SO ₂ ppm
Average	8.9	53.4	28.0
Minimum	7.2	14.5	6.5
Max.	9.6	97.2	84.3

East Bend Station: Field Testing

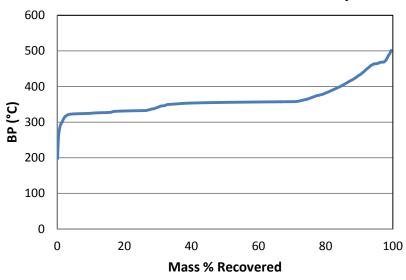

• Flue gas injection system updated with updated regulator, flow meter/totalizer, and pressure gauges


- Improved PBR installed at East Bend, along with updated control and data tracking system
- PBR inoculated in mid-June
- Strong algae growth observed; one plant outage and one lightning strike to date!

Gas Analysis at Photobioreactor Outlet

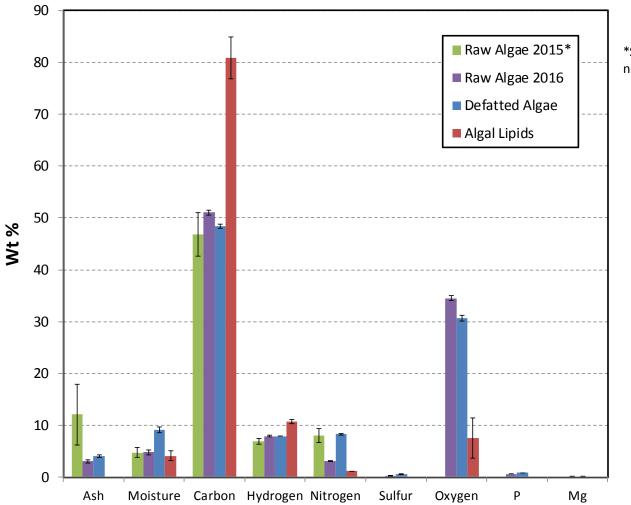
- \triangleright O₂ production correlates with CO₂ consumption
- Complete SOx removal from flue gas; ca. 50% NOx removal

System Biology (Task 3): Effect of N-Source with 9% CO₂


- N-source concentrations were set based on an equivalent price per L of media (0.13 g urea, 0.04 g of KNO₃, and 0.08 g NaNO₃ based on FOB prices)
- Lipid productivity was the same for nitrate grown cultures. However, both total achievable biomass and lipid productivity declined significantly for urea grown cultures after 6 and 12 days of growth.
- These results suggest that nitrate from the auto-oxidation of NOx at East Bend may be contributing significantly to the growth rates observed in the field.
- These results also support that nitrate supplementation could be economically feasible.

Biomass Utilization (Task 4): Lipid Extraction

Raw algae slurry (g)	Recovered solids (g)	Recovered lipids (g)	Recovered mass (%)
1027.3 (+/-10.1)	156.2 (+/-10.2)	12.7 (+/-0.2)	84.0 (+/-4.7)


Average +/- st. dev. from 6 experiments

- Wet Scenedesmus, typically ~15 wt% solids
- Ultrasound, microwave irradiation and bead beating all proved ineffective for cell lysing
- Acidification to pH 1 using aq. HCI/MeOH results in cell lysing and simultaneous lipid (trans)esterification
- Yield of lipids = 6.3 (+/- 0.1) wt%, close to value reported previously for dry *Scenedesmus**

Simulated Distillation of Esterified Lipids

Elemental Analysis of Whole and Defatted Algae

^{*}S, O, Mg and P not measured

- High N content of defatted algae implies high protein content, confirmed by Algix (50.7% protein)
- Defatted algae showed significantly improved odor properties
- Bioplastic compounding studies in progress

Key Milestones / Success Criteria

Decision Point	Date	Success Criteria	Status
Lipid extraction	9/30/16	>50 wt% total lipid recovery	>80% lipid
		demonstrated for wet extraction	recovery achieved
Demonstration of continuous	9/30/16	Solids recovery of >95%	>95% solids
dewatering		demonstrated	recovery achieved
Verification of methodology	9/30/17	Maintenance of culture viability for 2	
for culture maintenance		weeks without flue gas	
Validation of bioplastic	9/30/17	Mechanical properties of bioplastics	
properties		derived from defatted algae better	
		or equal to bioplastics based on	
		whole cell algae	
Lifecycle analysis	9/30/17	Lifecycle analysis shows net positive	
		greenhouse gas emission reduction	

Summary

- Waste heat integration study completed
- Prototype continuous dewatering system designed, constructed and tested, with good results (>95% algae capture)
- Field testing at East Bend Station commenced
- Nutrient studies suggest strategies for increasing *Scenedesmus* productivity
- Method for lipid extraction from wet algae (10-15% solids) identified
- Lipid extraction scaled up (5 kg defatted algae produced for testing at Algix)

Future Work

- Nitrogen source experiments to be conducted using flue gas
- Plant outage experiments (cultures currently being acclimatized to flue gas conditions)
- Cyclic flow PBR operation at East Bend with collection of performance data for mass and energy balances
- Field testing of continuous dewatering system
- Bioplastic compounding studies using whole and defatted algae
- TEA and LCA

Acknowledgements

- Department of Energy / National Energy Technology Laboratory: Andy Aurelio, Lynn Brickett, John Litynski
- University of Kentucky: \bullet Michael Wilson, Dr. Jack Groppo, Aubrey Shea, Stephanie Kesner, Daniel Mohler, Robert Pace, Molly Frazar, Dr. Czarena Crofcheck
- University of Delaware: • Dr. Jennifer Stewart, Jenna Schambach
- Algix: • Dr. Ashton Zeller, Ryan Hunt
- Duke Energy: **Doug Durst**

